Learning κ-testable languages
Acknowledgements

• Laurent Miclet, Jose Oncina and Tim Oates for previous versions of these slides.
• Rafael Carrasco, Paco Casacuberta, Rémi Eyraud, Philippe Ezequel, Henning Fernau, Thierry Murgue, Franck Thollard, Enrique Vidal, Frédéric Tantini, ...
• List is necessarily incomplete. Excuses to those that have been forgotten.

http://eurise.univ-st-etienne.fr/~cdlh/slides
Remember

• Regular languages cannot be identified from positive examples only (Gold 67);
• We have to concentrate on a sub-class of these.
K-testable languages

Inference of k-Testable Languages in the Strict Sense and Application to Syntactic Pattern Recognition. García & Vidal et al. 1990

Concept initially introduced for Pattern Recognition tasks
Definition

Let $k \geq 0$, a k-testable machine in the strict sense (k-TSS) is a 4-tuple $Z_k = (\Sigma, I, F, T)$ with:

- Σ a finite alphabet
- $I, F \subseteq \Sigma^<k$ (allowed prefixes of length less than k and suffixes of length $k-1$) and also all strings of length less than k.
- $T \subseteq \Sigma^k$ (allowed segments)
• The \(k \)-testable language is

\[
L(Z_k) = \left\{ \Sigma^* \cap \Sigma^* (F \cap \Sigma^{k-1}) - \Sigma^* (\Sigma^k \cap T) \Sigma^* \right\} \cup F
\]

• Strings (of length at least \(k \)) have to use all good prefixes and a good suffix of length \(k-1 \), and all sub-strings have to belong to \(T \). Strings of length less than \(k \) should be in \(F \).
• Or: \(\Sigma^k - T \) defines the prohibited segments.

• Key idea: use a window of size \(k \).
An example

This is a 2 testable language. You need a window of size 2 to avoid substring bb.

$I = \{ \lambda, a \}$

$F = \{ a \}$

$T = \{ aa, ab, ba \}$
The hierarchy of \(k\text{-TSS} \) languages

- \(k\text{-TSS}(\Sigma) = \{ L \subseteq \Sigma^*: L \text{ is } k\text{-TSS}\} \)
- All finite languages are in \(k\text{-TSS}(\Sigma) \) if \(k \) is large enough!
- \(k\text{-TSS}(\Sigma) \subset [k+1]\text{-TSS}(\Sigma) \)
- \((ba^k)^* \in [k+1]\text{-TSS}(\Sigma) \)
- \((ba^k)^* \notin k\text{-TSS}(\Sigma) \)
A language that is not κ-testable
Given a sample X, $a_{k-TSS}(X) = L(Z_k)$ where $Z_k = (\Sigma(X), I(X), F(X), \Pi(X))$ and

- $\Sigma(X)$ is the alphabet used in X
- $I(X) = \Sigma(X) <^k \cap \text{Pref}(X)$
- $F(X) = \Sigma(X)^{k-1} \cap \text{Suff}(X) \cup \Sigma(X) <^k \cap X$
- $\Pi(X) = \Sigma(X)^k \cap \{v: uvw \in X\}$
Example

• $X = \{a, \text{aa}, \text{abba}, \text{abbbba}\}$

• Let $k = 3$

 - $\Sigma(X) = \{a, b\}$

 - $I(X) = \{\lambda, a, \text{aa}, \text{ab}\}$

 - $F(X) = \{a, \text{aa}, \text{ba}\}$

 - $T(X) = \{\text{abb}, \text{bbb}, \text{bba}\}$

• Hence $a_{k-\text{TSS}}(X) = \text{ab}^*a + a$
Building the corresponding automaton

• Each string in I is a state;
• Each substring of length $k-1$ of strings in T is a state;
• λ is the initial state;
• Add a transition labeled b from u to ub for each ub in I;
• Add a transition labeled b from au to ub for each aub in T;
• Each state/substring that is in F is a final state.
Running the algorithm

\[X = \{a, \text{aa}, \text{abba}, \text{abbbba}\} \]

\[I = \{\lambda, a, \text{aa}, \text{ab}\} \]

\[F = \{a, \text{aa}, \text{ba}\} \]

\[T = \{a\text{bb}, b\text{bb}, b\text{ba}\} \]
Properties (1)

\[X \subseteq a_{k-TSS}(X) \]

\(a_{k-TSS}(X) \) is the smallest \(k \)-TSS language that contains \(X \)

- If there is a smaller one, some prefix, suffix or substring has to be absent.
Properties (2)

\(a_{k-TSS} \) identifies any \(k \)-TSS language in the limit.

Once all the prefixes, suffixes and substrings have been seen, the correct automaton is returned.

- If \(Y \subseteq X \), \(a_{k-TSS}(Y) \subseteq a_{k-TSS}(X) \)
Properties (3)

\[a_{k+1}^{-TSS}(X) \subseteq a_k^{-TSS}(X) \]

- In \(I_{k+1} \) (resp. \(F_{k+1} \) and \(T_{k+1} \)) there are less allowed prefixes (resp. suffixes or substrings) than in \(I_k \) (resp. \(F_k \) and \(T_k \)).

- Notice \(k^{-TSS}(\Sigma) \subset [k+1]^{-TSS}(\Sigma) \)

\[\forall k > \max_{x \in X} |x|, \quad a_k^{-TSS}(X) = X \]

- Because for a large \(k \), \(T_k(X) = \emptyset \)
Extensions

- These languages have been studied and adapted to:
 - Local languages
 - \(N \)-grams
 - Tree languages
Exercises (1)

- Run $a_{k-TSS}(X)$ for
 - $k=1, 2, 3, \text{ and } 15, \text{ and}$
 - $X=\{ab, \; abab, \; abababab\}$
Exercises (2)

• What is the complexity of a_{k-TSS}?
• Give an algorithm that computes a characteristic sample for a_{k-TSS}.
• How many mind changes does algorithm a_{k-TSS} make?
Exercises (3)

• How many implicit prediction errors does algorithm a_{k-TSS} make?
• Prove that identifying the entire class of testable languages is impossible from text.
• Prove that learning the entire class, from an informant, can be done but is not polynomial.