Active Learning

2010

Colin de la Higuera
Acknowledgements

- Laurent Miclet, Jose Oncina and Tim Oates for collaboration previous versions of these slides.
- Rafael Carrasco, Paco Casacuberta, Rémi Eyraud, Philippe Ezequel, Henning Fernau, Thierry Murgue, Franck Thollard, Enrique Vidal, Frédéric Tantini,...
- List is necessarily incomplete. Excuses to those that have been forgotten.

http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/

Book, chapters 9 and 13
Outline

1. Motivations and applications
2. The learning model
3. Some negative results
4. Algorithm L*
5. Some implementation issues
6. Extensions
7. Conclusion
0 General idea

- The learning algorithm (he) is allowed to interact with its environment through queries.
- The environment is formalised by an oracle (she).
- Also called learning from queries or oracle learning.
1 Motivations
Goals

- define a credible learning model
- make use of additional information that can be measured
- explain thus the difficulty of learning certain classes
- solve real life problems
Application: robotics

- A robot has to find a route in a maze
- The maze is represented as a graph
- The robot finds his way and can experiment
- The robot gets feedback

Application: web wrapper induction

- System SQUIRREL learns tree automata
- Goal is to learn a tree automaton which, when run on XML, returns selected items

Applications: under resourced languages

- When a language does not have enough data for statistical methods to be of interest, use of human expert for labelling
- This is the case for most languages
- Examples
 - Interactive predictive parsing
 - Computer aided translation
Checking models

- An electronic system can be modelled by a finite graph (a DFA)
- Checking if a chip meets its specification can be done by testing or by trying to learn the specification with queries

Playing games

2. The model
Notations

- We denote by T the target grammar or automaton.
- We denote by H the current hypothesis.
- We denote by $L(H)$ and $L(T)$ the corresponding languages.
- Examples are x, y, z, with labels $l_T(x)$, $l_T(y)$, $l_T(z)$ for the real labels and $l_H(x)$, $l_H(y)$, $l_H(z)$ for the hypothesized ones.
- The computation of $l_H(x)$ must take place in time polynomial in $|x|$.

Running example

- Suppose we are learning DFA
- The *running example* target is:

![Diagram of a DFA

Zadar, August 2010]
The Oracle

- knows the language and has to answer correctly
- no probabilities unless stated
- worse case policy: the Oracle does not want to help
Some queries

1. sampling queries
2. presentation queries
3. membership queries
4. equivalence queries (weak or strong)
5. inclusion queries
6. correction queries
7. specific sampling queries
8. translation queries
9. probability queries
2.1 Sampling queries (Ex)

\[w \] is drawn following some unknown distribution.
Sampling queries (Pos)

\[x \text{ is drawn following some unknown distribution, restricted to } L(T) \]
Sampling queries (Neg)

\(\mathbf{x} \) is drawn following some unknown distribution, restricted to \(\Sigma^* \setminus \mathbf{L}(T) \).
Example

- `Ex()` might return `(aabab, 1)` or `(\lambda, 0)`
- `Pos()` might return `abab`
- `Neg()` might return `aa`

Needs a distribution over Σ^*, $L(T)$ or $\Sigma^* \setminus L(T)$
2.2 Presentation queries

- A presentation of a language is an enumeration of all the strings in Σ^*, with a label indicating if a string belongs or not to $L(T)$ (informed presentation),
- or an enumeration of all the strings in $L(T)$ (text presentation)
- There can be repetitions
Presentation queries

\[i \in \mathbb{N} \quad \text{w} \models f(i) \]

\textit{f is a valid (unknown) presentation. Sub-cases can be text or informed presentations}
Example

- \(\text{Pres}_{\text{text}}(3) \) could be \(bba \)
- \(\text{Pres}_{\text{text}}(17) \) could be \(abbaba \)
- (the « selected » presentation being \(b, ab, aab, bba, aaab, abab, abba, bbab, \ldots \))
Example

• $\text{Pres}_{\text{informed}}(3)$ could be $(aab,1)$
• $\text{Pres}_{\text{informed}}(1)$ could be $(a,0)$
• (the « selected » presentation being $(b,1),(a,0),(aaa,0),(aab,1),(bba,1),(a,0)\ldots$)
2.3 Membership queries.

$L(T)$ is the target language.
Example

- $MQ(aab)$ returns 1 (or true)
- $MQ(bbb)$ returns 0 (or false)
2.4 Equivalence (weak) queries.

Yes if $L(T) = L(H)$

No if $\exists x \in \Sigma^*: x \in L(H) \oplus L(T)$

$A \oplus B$ is the symmetric difference
Equivalence (strong) queries.

Yes if $T \equiv H$

$x \in \Sigma^* : \ x \in L(H) \oplus L(T) \ $ if not
Example

- $\text{EQ}(H)$ returns $abbb$ (or $abba...$)
- $\text{WEQ}(H)$ returns false
2.5 Subset queries.

Yes if $L(H) \subseteq L(T)$

$x \in \Sigma^*$: $x \in L(H)$ and $x \notin L(T)$ if not
Example

- \(\text{SSQ}(H_1) \) returns true
- \(\text{SSQ}(H_2) \) returns \(abbb \)
2.6 Correction queries.

\[x \in \Sigma^* \]

Yes if \(x \in L(T) \)

\[y \in L(T) : y \text{ is a correction of } x \]

if not

Example

- $CQ_{\text{suff}}(bb)$ returns bba
- $CQ_{\text{edit}}(bb)$ returns any string in {b, ab, bba}
- $CQ_{\text{edit}}(bba)$ and $CQ_{\text{suff}}(bba)$ return true
2.7 Specific sampling queries

- Submit a grammar G
- Oracle draws a string from $L(G)$ and labels it according to T
- Requires an unknown distribution

- Allows for example to sample string starting with some specific prefix
2.8 Probability queries

- Target is a PFA.
- Submit w, Oracle returns $\Pr_f(w)$

String ba should have a relative frequency of $1/16$
2.9 Translation queries

- Target is a transducer
- Submit a string. Oracle returns its translation

\[
\begin{align*}
\text{Tr}(ab) & \text{ returns 100} \\
\text{Tr}(bb) & \text{ returns 0001}
\end{align*}
\]
Learning setting

Two things have to be decided

- The exact queries the learner is allowed to use
- The conditions to be met to say that learning has been achieved
What queries are we allowed?

- The combination of queries is declared
- Examples:
 - $\mathcal{Q} = \{\text{MQ}\}$
 - $\mathcal{Q} = \{\text{MQ, EQ}\}$ (this is an MAT)
Defining learnablility

- Can be in terms of classes of languages or in terms of classes of grammars
- The size of a language is the size of the smallest grammar for that language
- Important issue: when does the learner stop asking questions?
You can’t learn DFA with membership queries

- Indeed, suppose the target is a finite language
- Membership queries just add strings to the language
- But you can’t stop and be sure of success
Correct learning

A class C is **learnable with queries from Q** if there exists an algorithm a such that:

$\forall L \in C$, a makes a finite number of queries from Q, halts and returns a grammar G such that $L(G) = L$

We say that a learns C with queries from Q
Received information

- Suppose that during a run ρ, the information received from the Oracle is stocked in a table $\text{Info}(\rho)$
- $\text{Info}_n(\rho)$ is the information received from the first n queries
- We denote by $m\text{Info}_n(\rho)$ (resp. $m\text{Info}(\rho)$) the size of the longest information received from the first n queries (resp. during the entire run ρ)
Polynomial update

- A polynomial $p(\cdot)$ is given
- After the n^{th} query in any run ρ, the runtime before the next query is in $\mathcal{O}(p(m))$, where $m = m_{\text{Info}}_n(\rho)$

We say that a makes polynomial updates
Polynomial update

\[<p(\max(\|x_1\|, \|x_2\|, \|x_3\|, \|x_4\|)) \]
Correct learning

A class \mathcal{C} is learnable with a polynomial number of queries from \mathcal{Q} if there exists an algorithm \mathbf{a} and a polynomial $q(\cdot, \cdot)$ such that:

1) $\forall L \in \mathcal{C} \quad \mathbf{a}$ learns L with queries from \mathcal{Q}

2) \mathbf{a} makes polynomial updates

3) \mathbf{a} uses during a run ρ at most $q(m, |L|)$ queries, where $m = m\text{Info}(\rho)$
Comment

- In the previous definitions, the queries receive deterministic answers.
- When the queries have a probabilistic nature, things still have to be discussed as identification cannot be sure.
PAC learning
(Valiant 84, Pitt 89)

- \mathcal{C} a set of languages
- \mathcal{G} a set of grammars
- $\varepsilon > 0$ and $\delta > 0$
- m a maximal length over the strings
- n a maximal size of grammars
\(H \) is \(\varepsilon \)-AC (approximately correct)*

\[
\Pr_{\delta}[\ell_H(x) \neq \ell_T(x)] < \varepsilon
\]
Errors: we want $\Pr_0[\ell_H(x) \neq \ell_T(x)] < \varepsilon$
3 Negative results
3.1 Learning from membership queries alone

- Actually we can use subset queries and weak equivalence queries also, without doing much better.
- Intuition: keep in mind lock automata...
Lemma (Angluin 88)

- If a class C contains a set $C \cap$ and n sets $C_1...C_n$ such that $\forall i, j \in [n] \quad C_i \cap C_j = C \cap$, any algorithm using membership, weak equivalence and subset queries needs in the worse case to make $n-1$ queries.
$\text{WEQ}(C \cap C)$
WEQ(C_j)

Equivalence query on this C_j
Sub$(C \cap C)$

YES!!!

(so what?)

Is $C \subset C$ included?
Subset query on this C_i
MQ(x)

YES!!!
(so what?)

Does x belong?
$MQ(x)$

No... of course.

Does x belong?
Proof (summarised)

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WEQ(C_i)$</td>
<td>No</td>
<td>eliminates C_i</td>
</tr>
<tr>
<td>$SSQ(C)$</td>
<td>Yes</td>
<td>eliminates nothing</td>
</tr>
<tr>
<td>$SSQ(C_i)$</td>
<td>No</td>
<td>eliminates nothing</td>
</tr>
<tr>
<td>$MQ(x) (\in C)$</td>
<td>Yes</td>
<td>eliminates nothing</td>
</tr>
<tr>
<td>$MQ(x) (\notin C)$</td>
<td>No</td>
<td>eliminates C_i such that $x \in C_i$</td>
</tr>
</tbody>
</table>
Corollary

Let DFA_n be the class of DFA with at most n states.

DFA_n cannot be identified by a polynomial number of membership, weak equivalence and inclusion queries.

- $L \cap = \emptyset$
- $L_i = \{w_i\}$ where w_i is i written in base 2.
3.2 What about equivalence queries?

- Equivalence queries measure also the number of implicit prediction errors a learning algorithm might make
The halving algorithm (1)

- Suppose language consists of any subset of set of n strings $\{w_1, \ldots, w_n\}$
- There are 2^n possible languages
- After k queries, candidate languages belong to set C_k
- w_i is a consensus string if it belongs to a majority of languages in C_k
The halving algorithm (2)

- Then consider consensus language $H_k = \{w_i; w_i \text{ is a consensus string for } C_k\}$.
- Submit $EQ(H_k)$
- A counterexample is therefore not a consensus string so less than half the languages in C will agree with the counterexample. Therefore $|C_{k+1}| \leq \frac{1}{2} |C_k|$
- Hence in n steps convergence is ensured!
Why is this relevant?

- The halving algorithm can work when $|C_0| = 2^{\rho(n)}$
- This is always the case (because grammars are written with $\rho(n)$ characters)
- That is why it is important that the equivalence queries are proper
- Proper: $\text{EQ}(L)$ with L in C_0
3.3 Learning from equivalence queries alone

Theorem (Angluin 88)

DFA cannot be identified by a polynomial number of strong equivalence queries.

(Polynomial in the size of the target)
Proof
(approximate fingerprints)

- \(\forall n \), let \(\mathcal{H}_n \) be a class of \([\text{size } n]\) DFA
- \(\forall A \) (perhaps not in \(\mathcal{H}_n \)), and \(\forall q() \), and \(\forall n \) sufficiently large \(\exists w_A: |w_A| < q(n) \) such that
 \[
 |\{ F \in \mathcal{H}_n : w_A \in L_A \iff w_A \in L_F \}| < |\mathcal{H}_n|/q(n)
 \]
- Answering no to \(A\) and returning \(w_A \) as a counter example only eliminates a sub-polynomial fraction of DFA...
4 Algorithm L*

Learning regular sets from queries and counter-examples, D. Angluin, Information and computation, 75, 87-106, 1987
Queries and Concept learning, D. Angluin, Machine Learning, 2, 319-342, 1988
4.1 The Minimal Adequate Teacher

- Learner is allowed:
 - strong equivalence queries
 - membership queries
General idea of L^*

- find a good table (representing a DFA)
- submit it as an *equivalence query*
- use counterexample to update the table
- submit *membership queries* to make the table good
- iterate
4.2 An observation table

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>aa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The states (RED)

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0 0</td>
<td></td>
</tr>
</tbody>
</table>

The experiments (EXP)

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>aa</th>
<th>ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1 0</td>
<td>0 0</td>
<td>1 0</td>
</tr>
<tr>
<td>aa</td>
<td>0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The transitions (BLUE)
Meaning

\[\delta(q_0, \lambda. \lambda) \in \mathcal{F} \iff \lambda \in \mathcal{L} \]

Must have identical label (redundancy)
\[
\begin{array}{c|cc}
\lambda & a \\
\hline
\lambda & 1 & 0 \\
\lambda & 0 & 0 \\
a & 0 & 0 \\
\hline
b & 1 & 0 \\
\lambda & 0 & 0 \\
ab & 1 & 0 \\
\end{array}
\]

\[\delta(q_0, \text{ ab. a}) \notin F \iff \text{ aba } \notin L\]
Equivalent prefixes

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>aa</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td>1 0</td>
<td></td>
</tr>
</tbody>
</table>

These two rows are equal, hence

\[\delta(q_0, \lambda) = \delta(q_0, ab) \]
Equivalent prefixes are states

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>aa</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td>1 0</td>
<td></td>
</tr>
</tbody>
</table>
Building a DFA from a table
<table>
<thead>
<tr>
<th></th>
<th>(\lambda)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(a)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(aa)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(ab)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Some rules

This set is suffix-closed

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This set is prefix-closed

RED \ RED = BLUE

RED

=BLUE
An incomplete table

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>aa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Good idea

We can complete the table by submitting membership queries...

\[uv \in L \, ? \]
A table is closed if any row of *BLUE* corresponds to some row in *RED*.

<table>
<thead>
<tr>
<th></th>
<th>(\lambda)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(a)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\text{Not closed} \]
And a table that is not *closed*

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>aa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
What do we do when we have a table that is not closed?

- Let s be the row (of $BLUE$) that does not appear in RED
- Add s to RED, and $\forall a \in \Sigma$, add sa to $BLUE$
An inconsistent table

<table>
<thead>
<tr>
<th></th>
<th>(\lambda)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(a)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(aa)</th>
<th>(ab)</th>
<th>(ba)</th>
<th>(bb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(aa)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(ab)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(ba)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(bb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Are \(a\) and \(b\) equivalent?
A table is consistent if

Every equivalent pair of rows in RED remains equivalent in $\text{RED} \cup \text{BLUE}$ after appending any symbol

$$\text{OT}[s_1] = \text{OT}[s_2] \quad \Rightarrow \quad \forall a \in \Sigma, \text{OT}[s_1a] = \text{OT}[s_2a]$$
What do we do when we have an inconsistent table?

Let \(a \in \Sigma \) be such that \(OT[s_1] = \text{row}(s_2) \) but \(OT[s_1a] \neq OT[s_2a] \)

- If \(OT[s_1a] \neq OT[s_2a] \), it is so for experiment \(e \)
- Then add experiment \(ae \) to the table
What do we do when we have a closed and consistent table?

- We build the corresponding DFA
- We make an equivalence query!!!
What do we do if we get a counter-example?

- Let u be this counter-example

- $\forall w \in \text{Pref}(u) \text{ do}$
 - add w to RED
 - $\forall a \in \Sigma$, such that $wa \notin \text{RED}$ add wa to BLUE
4.3 Run of the algorithm

Table is now closed and consistent.

<table>
<thead>
<tr>
<th></th>
<th>(\lambda)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Zadar, August 2010
An equivalence query is made!

Counter example baa is returned
Zadar, August 2010

Not consistent

Because of
Table is now closed and consistent.
The algorithm

while not A do
 while OT is not complete, consistent or closed do
 if OT is not complete then make MQ
 if OT is not consistent then add experiment
 if OT is not closed then promote
 A ← EQ(OT)
4.4 Proof of the algorithm

Sketch only

Understanding the proof is important for further algorithms
Termination / Correctness

- For every regular language there is a unique minimal DFA that recognizes it.
- Given a closed and consistent table, one can generate a consistent DFA.
- A DFA consistent with a table has at least as many states as different rows in H.
- If the algorithm has built a table with n different rows in H, then it is the target.
Finiteness

- Each closure failure adds one different row to \(RED \)
- Each inconsistency failure adds one experiment, which also creates a new row in \(RED \)
- Each counterexample adds one different row to \(RED \)
Polynomial

- $|\text{EXP}| \leq n$
- at most $n-1$ equivalence queries
- $|\text{membership queries}| \leq n(n-1)m$ where m is the length of the longest counter-example returned by the oracle
Conclusion

- With an MAT you can learn DFA
 - but also a variety of other classes of grammars
 - it is difficult to see how powerful is really an MAT
 - probably as much as PAC learning
 - Easy to find a class, a set of queries and provide and algorithm that learns with them
 - more difficult for it to be meaningful
- Discussion: why are these queries meaningful?
Discussion

- Are membership and equivalence queries realistic?
- Membership queries are plausible in a number of applications
- Equivalence queries are not
- A way around this is to do sampling
Good idea

- If we sample following \mathcal{D} 100 strings, and we coincide in labelling with the Oracle, then how bad are we?

- Formula: suppose the error is more than ε, then coinciding 100 times has probability at least $(1 - \varepsilon)^{100}$. The chance this happens is less than 0.6% for $\varepsilon = 5\%$
About PAC learning and equivalence queries

To be convinced that equivalence queries can exist replace them by the following test:

- draw m random examples $x_1, ..., x_m$
- if $\forall i \ell_T(x_i) = \ell_H(x_i)$ then the error is most likely small...
How small?

- Let us suppose that the true error is more than ε
- Then
 - the probability of selecting randomly one example where T and H coincide is at most $1-\varepsilon$
 - the probability of selecting randomly m examples where T and H coincide (all the time) is at most $(1-\varepsilon)^m$
And

- \((1-\varepsilon)^m \leq e^{-\varepsilon m}\)
- So by making this \(\delta\) we have:

\[
\delta \geq e^{-\varepsilon m}
\]

\[
\Leftrightarrow \quad \log \delta \geq -\varepsilon m
\]

\[
\Leftrightarrow \quad \log(1/\delta) \leq \varepsilon m
\]

\[
\Leftrightarrow \quad m \geq 1/\varepsilon \log(1/\delta)
\]
Conclusion

- If we can draw according to the true distribution, one can learn a approximately correct DFA from membership queries only.
5 Implementation issues

How to implement the table

About Zulu
Instead of memorising a table of 0s and 1s, data structure should be a table of «knowledge»

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ba</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>baa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>bb</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>bab</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>baaa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>baab</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Use pointers

\[
\begin{array}{c|cc}
\lambda & a \\
\hline
\lambda & 1 & 1 \\
b & 1 & 1 \\
ba & 1 & 0 \\
baa & 0 & 0 \\
a & 1 & 0 \\
bb & 1 & 1 \\
bab & 1 & 1 \\
baaa & 0 & 0 \\
baab & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\lambda & a \\
\hline
\lambda & 1 & 1 \\
a & 1 & 1 \\
b & 1 & 1 \\
aa & 0 & 0 \\
ba & 1 & 0 \\
baa & 0 & 0 \\
bab & 1 & 0 \\
baaa & 0 & 0 \\
baab & 0 & 0 \\
baaba & 0 & 0 \\
\end{array}
\]
Zulu competition

- 23 competing algorithms, 11 players
- End of the competition a week ago
- Tasks:
 - Learn a DFA, be as precise as possible, with n queries
Results

<table>
<thead>
<tr>
<th>Task</th>
<th>queries</th>
<th>alphabet</th>
<th>Best%</th>
<th>states</th>
<th>Task</th>
<th>queries</th>
<th>alphabet</th>
<th>states</th>
<th>Best%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>304</td>
<td>3</td>
<td>100,00</td>
<td>8</td>
<td>13</td>
<td>725</td>
<td>15</td>
<td>10</td>
<td>100,00</td>
</tr>
<tr>
<td>2</td>
<td>199</td>
<td>3</td>
<td>100,00</td>
<td>16</td>
<td>14</td>
<td>1365</td>
<td>15</td>
<td>17</td>
<td>100,00</td>
</tr>
<tr>
<td>3</td>
<td>1197</td>
<td>3</td>
<td>96,50</td>
<td>81</td>
<td>15</td>
<td>5266</td>
<td>15</td>
<td>60</td>
<td>100,00</td>
</tr>
<tr>
<td>4</td>
<td>1384</td>
<td>3</td>
<td>93,22</td>
<td>100</td>
<td>16</td>
<td>7570</td>
<td>15</td>
<td>71</td>
<td>100,00</td>
</tr>
<tr>
<td>5</td>
<td>1971</td>
<td>3</td>
<td>85,89</td>
<td>151</td>
<td>17</td>
<td>17034</td>
<td>15</td>
<td>147</td>
<td>100,00</td>
</tr>
<tr>
<td>6</td>
<td>3625</td>
<td>3</td>
<td>100,00</td>
<td>176</td>
<td>18</td>
<td>16914</td>
<td>15</td>
<td>143</td>
<td>87,94</td>
</tr>
<tr>
<td>7</td>
<td>429</td>
<td>5</td>
<td>100,00</td>
<td>15</td>
<td>19</td>
<td>1970</td>
<td>5</td>
<td>93</td>
<td>81,67</td>
</tr>
<tr>
<td>8</td>
<td>375</td>
<td>5</td>
<td>100,00</td>
<td>18</td>
<td>20</td>
<td>1329</td>
<td>5</td>
<td>61</td>
<td>70,00</td>
</tr>
<tr>
<td>9</td>
<td>2524</td>
<td>5</td>
<td>96,44</td>
<td>84</td>
<td>21</td>
<td>571</td>
<td>5</td>
<td>40</td>
<td>69,22</td>
</tr>
<tr>
<td>10</td>
<td>3021</td>
<td>5</td>
<td>100,00</td>
<td>90</td>
<td>22</td>
<td>735</td>
<td>5</td>
<td>57</td>
<td>65,11</td>
</tr>
<tr>
<td>11</td>
<td>5428</td>
<td>5</td>
<td>99,94</td>
<td>153</td>
<td>23</td>
<td>483</td>
<td>5</td>
<td>73</td>
<td>86,61</td>
</tr>
<tr>
<td>12</td>
<td>4616</td>
<td>5</td>
<td>100,00</td>
<td>123</td>
<td>24</td>
<td>632</td>
<td>5</td>
<td>78</td>
<td>100,00</td>
</tr>
</tbody>
</table>
6 Further challenges
Transducer learning

$abaab \rightarrow acbbb$
Transducer learning

Multiplication by 3
Typical queries

- Translation queries
- \(\text{Tr}(w) \)? Oracle answers with the translation of \(w \)

PFA learning

- Probabilistic finite automata can be
 - Deterministic
 - Non deterministic
A deterministic PFA

\[\text{Pr}_A(abab) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} \times \frac{2}{3} \times \frac{3}{4} = \frac{1}{24} \]
A nondeterministic PFA

Pr(aba) = 0.7*0.4*0.1*1 + 0.7*0.4*0.45*0.2
= 0.028 + 0.0252 = 0.0532
What queries should we consider?

- **Probability queries**
 - PQ(\(w\))? Oracle returns \(\Pr_D(w)\)
- **EX()?** Oracle returns a string \(w\) randomly drawn according to \(D\)
- **Specific sampling query** \(\text{SSQ}(L)\)
 - Oracle returns a string belonging to \(L\) sampled according to \(D\)
 - Distribution is \(\Pr_D(L) = \Pr_D(w)/\Pr_D(L)\)
Context-free grammar learning

- Typical query corresponds to using the grammar (structural query)

- In which case the goal is to identify the grammar, not the language!
7 General conclusion
Some open problems

- Find better definitions
- Do these definitions give a general framework for grammatical inference?
- How can we use resource bounded queries?
- Use Zulu or develop new tools for Zulu