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Abstract. In the context of protein engineering, we consider the prob-
lem of computing an mRNA sequence of maximal codon-wise similarity
to a given mRNA (and consequently, to a given protein) that addition-
ally satisfies some secondary structure constraints, the so-called MRSO

problem introduced in [2]. Since the MRSO problem is known to be
APX-hard [7], Bongartz proposed in [7] to attack the problem using
the concept of parameterized complexity. In this paper we devise fixed-
parameter algorithms for MRSO for several interesting parameters.

1 Introduction

In [2, 3], Backofen et al. introduced the problem of computing an mRNA sequence
of maximum codon-wise similarity to a given mRNA (and consequently, to a
given protein) that additionally satisfies some secondary structure constraints,
the so-called MRSO problem.

The initial motivation of MRSO is concerned with selenocysteine insertion,
i.e. generating new amino acid sequences containing selenocysteine. This rare
amino acid was discovered as the 21st amino acid [5], giving another clue to the
complexity and flexibility of the mRNA translation mechanism. Selenocysteine
is encoded by the UGA codon, which is usually a stop codon encoding the end
of translation. It has been shown [5] that in case of selenocysteine, termination
of translation is inhibited in the presence of a sequence of nucleotides which
forms a hairpin like structure in the 3′-region after the UGA codon. It is argued
in [2] that modifying existing proteins by incorporating selenocysteine instead of
a catalytic cysteine is an important problem for catalytic activity enhancement
and X-ray crystallography.



Selenocysteine insertion is concerned with a restricted type of secondary
structure, i.e. a secondary structure without pseudo-knots, and hence the linear-
time algorithm presented in [2] provides an optimal solution. However, sim-
ilar problems occur with complex secondary structures, e.g. for programmed
frameshifts which allow to encode two different amino acid sequences in one
mRNA sequence [10, 9]. This motivates the investigation of MRSO for more
elaborate secondary structures [2, 7], and is the starting point of our study.

For the MRSO problem, it has been shown in [2] that there exists a linear-
time algorithm if the considered secondary structure corresponds to an outer-
planar graph (as it is the case for Selenocysteine insertion). In this paper, we
refer to this algorithm as AOP. For the general case, the problem was proved
to be NP-complete in [2], and Bongartz showed recently that the problem is in
fact APX-hard [7]. An algorithm for approximating the MRSO problem within
ratio 2 is given in [2]. A slightly slower but somewhat simpler algorithm for
approximating the MRSO problem within ratio 4 is given in [7]. We mention
also that an extension of the MRSO problem, where insertions and deletions
are allowed in the amino acid sequence, is presented in [1].

Since the MRSO problem for general secondary structures is known to be
APX-hard [7], Bongartz proposes in [7] to attack the problem using the concept
of parameterized complexity [8]. Parameterized complexity is an approach to
complexity theory which offers a means of analyzing algorithms in terms of their
tractability. For many hard problems, the seemingly unavoidable combinatorial
explosion can be restricted to a small part of the input, the parameter, so that
the problems can be solved in polynomial-time when the parameter is fixed.

In the last decade, parameterized complexity has proved to be useful in com-
putational biology [6]. Consequently, since MRSO is APX-hard [7], Bongartz
proposed in [7] to attack the problem using the concept of parameterized com-
plexity [8]. In this paper we adopt this suggested approach. Our main contribu-
tion is new polynomial-time algorithms for MRSO when certain parameters of
the problem’s input are fixed.

2 Preliminaries

An mRNA is a string over the alphabet Σ = {A,C,G,U}, where Σ represents
the four different types of nucleotides in the molecule. The pairs {A,U}, {G,C},
and {G,U} are known as complementary nucleotide pairs. Note that hydrogen
bonds can only be formed between complementary nucleotides in an mRNA fold-
ing. A codon of an mRNA sequence is a sequence of three consecutive nucleotides,
i.e. a string in Σ3. Thus, an mRNA sequence S = s1 · · · s3n is a concatenation
of n consecutive codons, where the ith codon of S is s3i−2s3i−1s3i.

Given a source mRNA sequence S = s1 . . . s3n, we wish to evaluate the codon-
wise similarity of S and another target mRNA sequence T = t1 . . . t3n. For this,
we are provided with a set of n functions, F = f1, . . . , fn, called similarity

functions of S, such that for all 1 ≤ i ≤ n, each function fi is of the form
fi : Σ3 → Q. Thus, fi assigns a value to the ith codon of T according to its level



of similarity in comparison with the ith codon of S. The total level of similarity
between S and T is then given by

∑n
i=1 fi(t3i−2t3i−1t3i). Note that given a set

of similarity functions F = f1, . . . , fn for S, one does not need to know anything
else about S in order to compute the similarity score of S and T .

The structure constrains Γ ⊆ {{i, j} | 1≤ i < j ≤ 3n} for a target mRNA
sequence T of length 3n, are pairings between distinct integers in {1, 2, . . . , 3n}.
These represent necessary hydrogen bonds in the folding of T . Since we assume
that each nucleotide can pair with at most one other nucleotide in any folding,
each integer appears in at most one pair in Γ . Furthermore, there are no pairs
of the form {i, i+ 1} or {i, i+ 2} in Γ , for all 1 ≤ i ≤ 3n− 2.

Given a set of structure constrains Γ ⊆ {{i, j} | 1 ≤ i < j ≤ 3n}, and an
arbitrary target mRNA sequence T = t1 · · · t3n, we say that nucleotides ti and tj
are compatible with respect to Γ , if either {ti, tj} is a complementary nucleotide
pair or {i, j} /∈ Γ . The entire sequence T is compatible with respect to Γ , if all
pairs of nucleotides in T are compatible with respect to Γ .

Definition 1 (mRNA Structure Optimization (MRSO) [2]). Let F be a

set of n similarity functions for a source mRNA sequence of length 3n, and let

Γ ⊆ {{i, j} | 1≤ i<j≤3n} be a set of structure constrains. The MRSO problem

asks to find a target mRNA sequence which is compatible with respect to Γ , and

which achieves the highest possible similarity score with respect to F .

It is convenient to formalize MRSO in a slightly different manner using graph
theoretic concepts. For a graph G, we let V(G) denote the set of vertices of G,
and E(G) the set of edges of G. A linear graph G is a graph with V(G) =
{1, . . . , |V(G)|}. That is, it is a graph with vertices which have a fixed ordering.
Therefore, we now view Γ as a linear graph with 3n vertices and a maximum
degree of one. As we are really interested in codon-wise similarity, we use a more
suitable representation of Γ .

Definition 2 (Implied structure graph [2]). Let Γ ⊆ {{i, j} | 1≤ i<j≤3n}
be a set of structure constrains for a target mRNA sequence of length 3n. The

implied structure graph of Γ , is the linear graph GΓ with:

V(GΓ ) = {1, 2, . . . , n}, and

E(GΓ ) =
{

{i, j}
∣

∣

∣
∃{x, y} ∈ Γ : x ∈ {3i−2, 3i−1, 3i} ∧ y ∈ {3j −2, 3j−1, 3j}

}

.

Hence, GΓ is a subcubic graph (i.e. a graph with a maximum degree of
three) where vertex i in V(GΓ ) corresponds to the ith codon of a target mRNA
sequence, and i, j ∈ V(GΓ ) are connected in E(GΓ ) if there are any structure
constrains in Γ between the ith and jth codons of the sequence. Note that there
can be at most three structure constrains between any pair of codons.

Given a subset of vertices V ⊆ V(GΓ ), we let GΓ [V ] denote the subgraph of
GΓ induced by V , i.e. the subgraph with vertex set V and edge set E(GΓ )∩(V×
V ). Similarly, given a subset of edges E ⊆ E(GΓ ), GΓ [E] denotes the subgraph
of GΓ with vertex set {i : {i, j} ∈ E(GΓ )} and edge set E. Furthermore, we let
GΓ [i, j] denote the subgraph of GΓ induced by {i, . . . , j} ⊆ V(GΓ ).



Henceforth, we speak of codon assignments for the vertices of GΓ ,
i.e. mappings from some V ⊆ V(GΓ ) to Σ3. An assignment for a pair
of vertices i, j ∈ V(GΓ ), i → t3i−2t3i−1t3i and j → t3j−2t3j−1t3j , is
compatible with respect to GΓ , if either {i, j} /∈ E(GΓ ) or for any
{x, y} ∈ Γ ∩ {3i− 2, 3i− 1, 3i} × {3j − 2, 3j − 1, 3j}, tx and ty are comple-
mentary nucleotides. More generally, an assignment φ : V → Σ3 for some
V ⊆ V(GΓ ) is compatible with respect to GΓ , if for any i, j ∈ V , the
assignment i→ φ(i) and j→ φ(j) is compatible with respect to GΓ . Our goal
in this setting, is to find an assignment φ : V(GΓ ) → Σ3 (i.e. a target mRNA
sequence T = φ(1) · · ·φ(n)), which is compatible with GΓ , and which maximizes
∑n
i=1 fi(φ(i)).

3 Two natural parameters for MRSO

Our discussion begins by considering two natural parameters for MRSO. Let
(GΓ ,F) be an instance of MRSO. The two parameters we consider are the
number of edge crossings and the number of degree three vertices in GΓ , as
parameters for MRSO. We let χ and δ denote these two parameters respectfully.

Our initial interest in parameters χ and δ arises from the fact that we be-
lieve them to be small in many practical applications. Consider parameter χ. It
is widely believed that many natural mRNA secondary structures form an out-
erplanar formation, i.e. a formation containing no edge crossings. Consequently,
exploring this parameter was suggested explicitly in [7]. As for parameter δ, re-
call that a vertex of degree three in GΓ represents a codon with three nucleotides,
each pairing with complementary nucleotides in three different codons. Although
this situation can occur in a folding of an mRNA molecule, it can be expected
to be quite rare due to the natural geometric and thermodynamic constrains
imposed on any such folding.

It turns out that MRSO is in polynomial-time solvable when either χ or
δ are fixed. To show this, we will first describe a general algorithm, and later
demonstrate how it can be applied for both cases. We will need the following
definition:

Definition 3 (Nice edge bipartition). Let GΓ be an implied structure graph

with n vertices. An edge bipartition P = (Et, Eb) of GΓ is a partitioning of

the edges in GΓ into Et and Eb, the top and bottom edges of P, such that

Et∪Eb = E(GΓ ), Et∩Eb = ∅ and Et 6= ∅. If the subgraph GΓ [Et] is outerplanar

then P is nice.

Our initial algorithm is called ANEB. This algorithm will apply only for cases
where a nice edge bipartition of GΓ with a fixed number of bottom edges is
given alongside the input. Following the description of ANEB, we show that when
considering either χ or δ to be fixed, one can easily obtain such a bipartition.

The heart of algorithm ANEB is the following simple observation. Suppose
we want to find the highest scoring compatible mRNA sequence which starts



with codon AAA. For this, we can replace the similarity function f1 ∈ F by a
different function f ′, where f ′(AAA) = f1(AAA) and f ′(C) = −∞ for all codons
C 6= AAA. Solving MRSO with the instance (GΓ ,F

′), where F ′ = f ′, f2, . . . , fn,
gives us the desired mRNA. We extend this example in the following definition:

Definition 4 (Corresponding similarity functions). Let (GΓ ,F) be an in-

stance of MRSO with F = f1, . . . , fn. Also, let φ : V → Σ3 be a codon as-

signment for some V ⊆ V(GΓ ). The corresponding set of similarity functions of

assignment φ, denoted Fφ = fφ1 , . . . , f
φ
n , is defined as follows:

– For all i ∈ V : fφi (φ(i)) = fi(φ(i)), and fφi (C) = −∞ for any C 6= φ(i).

– For all j ∈ V(GΓ ) − V : fφj = fj.

Algorithm ANEB uses AOP, the algorithm given in [2] for outerplanar implied
structure graphs, as a subprocedure. At its core, ANEB is basically an exhaus-
tive search algorithm that searches through all possible codon assignments for
vertices which are incident to edges in Eb. For each such assignment, ANEB first
checks if the assignment is compatible with respect to GΓ [Eb], and if so, it in-
vokes AOP with the set of similarity functions corresponding to this assignment.
Finally, ANEB outputs the maximum solution over all target mRNAs returned
by AOP. A schematic description of ANEB is given in Figure 1.

Algorithm ANEB(GΓ ,F ,P)

Data : An implied structure graph GΓ of order n, a set of similarity functions
F = f1, . . . , fn and a nice edge bipartition P = (Et, Eb).

Result : An optimal target mRNA sequence t = t1t2 . . . tn which is compatible
with GΓ .

begin
foreach possible codon assignment φ to vertices incident to edges in Eb do

if φ is compatible with respect to GΓ [Eb] then
(a) Construct Fφ, the similarity functions corresponding to φ.
(b) Invoke AOP(GΓ [Et],Fφ).

end
end
return the target mRNA sequence found in Step (b) with the highest
similarity score.

end

Fig. 1. Algorithm ANEB.

Lemma 1. Given an instance (GΓ ,F) for MRSO accompanied by a nice edge

bipartition P = (Et, Eb) of GΓ , ANEB computes an optimal target mRNA se-

quence for this instance in O(642εn) time, where n = |V(GΓ )| and ε = |Eb|.

Proof. Consider the schematic description of ANEB in Figure 1. Any assignment
enumerated in the algorithm is verified for compatibility with respect to GΓ [Eb].



Hence, by the correctness of AOP, any target mRNA outputted by ANEB with a
similarity score higher than −∞ is compatible with respect to GΓ . Furthermore,
all possible codon assignments to vertices which are incident to edges in Eb are
considered by ANEB. Therefore, by the optimality of AOP, this target mRNA
must be optimal with respect to F .

For the time complexity bound, consider any vertex in GΓ . The number of
possible codons assignments to this vertex is |Σ3| = 64. Therefore, the number of
assignments enumerated in the algorithm is bounded by O(642ε). Furthermore,
constructing any such assignment and checking it for compatibility with respect
to GΓ [Eb] can be done in O(n) time. Hence, since each call to AOP requires
O(n) time, the overall time complexity of ANEB is bounded by O(642εn). ut

We now return to our two parameters χ and δ, starting with χ. Recall that
if χ = 0 then GΓ is outerplanar. Hence, a nice edge bipartition with χ bottom
edges is available by definition. To see this, consider an edge bipartition with
one bottom edge for each pair of edge crossings in GΓ . Such an edge bipartition
is nice, has at most χ bottom edges, and can be constructed in linear time. We
therefore obtain the following proposition.

Proposition 1. MRSO is polynomial-time solvable in case χ = O(lg |V(GΓ )|).

Proof. According to the above discussion, GΓ has a nice edge bipartition with
at most χ bottom edges and this partitioning can be constructed in O(n) time.
Thus, by Lemma 1, algorithm ANEB can be applied to solve MRSO in O(642δn)
time, and so proposition above follows. ut

Next consider parameter δ. Constructing a nice edge bipartition with δ bot-
tom edges is immediate when considering the following easy lemma.

Lemma 2. If G is a graph with maximum degree 2, then G is outerplanar.

Proof. If G is a graph with maximum degree 2, then every component in G
is either a path or a cycle. Since paths and cycles are outerplanar, the lemma
immediately follows. ut

Consider an edge bipartition of GΓ such that for each degree three vertex
i ∈ V(GΓ ), exactly one edge incident to i is a bottom edge. Clearly, such a
bipartition has at most δ bottom edges and can be constructed in linear time.
Let P = (Et, Eb) be an edge bipartition obtained in this fashion. Since GΓ
is subcubic, every vertex is incident to at most two top edges in P. Thus, by
Lemma 2, G[Et] is outerplanar and P is nice.

Proposition 2. MRSO is polynomial-time solvable in case δ = O(lg |V(GΓ )|).

Proof. Replace δ with χ in the proof of Proposition 1. ut



4 The cutwidth of GΓ

Let (GΓ ,F) be an instance of MRSO with V(GΓ ) = {1, . . . , n}. For p ∈
{1, . . . , n− 1}, the p-cutwidth of GΓ is defined as the number of edges con-
necting vertices in {1, . . . , p} to vertices in {p+1, . . . , n}. The cutwidth of GΓ is
defined as the maximum p-cutwidth over all p ∈ {1, . . . , n−1}. In the following
we consider the cutwidth of GΓ as a parameter for MRSO. We begin by showing
that the problem is polynomial-time solvable in case GΓ has a cutwidth which is
bounded by O(lg n). Following this, we show that this result implies that MRSO

is polynomial-time solvable for several other interesting cases. We let ψ denote
the cutwidth of GΓ throughout the section.

For obtaining our initial result, we present an algorithm which we call ACUT.
This algorithm works by recursively partitioning GΓ into two subgraphs GΓ [1, p]
and GΓ [p+1, n], and then concatenating two optimal target mRNA sequences
T ′ = C1, . . . , Cp and T ′′ = Cp+1, . . . , Cn which are compatible with respect to
these two subgraphs. To ensure that the concatenated solution T = T ′T ′′ is also
compatible with respect to GΓ , the algorithm enumerates all codon assignments
between connected vertices of the two subgraphs. In order to prevent unneces-
sary assignments from being enumerated, the algorithm distinguishes between
vertices which were assigned a codon in a previous recursive step, and those
which have yet been assigned one.

As in ANEB, algorithm ACUT uses corresponding similarity functions (Defi-
nition 4) to enforce codon assignments. A similarity function f is degenerate, if
there is some codon C such that f(C) > −∞, and f(C ′) = −∞ for any other
codon C ′ ∈ Σ3, C ′ 6= C. In ACUT, we use degenerate similarity functions both to
recognize the assigned vertices along the recursion, and also to propagate their
corresponding codon assignment. A schematic description of ACUT is given in
Figure 2.

Lemma 3. Given an instance (GΓ ,F) for MRSO, algorithm ACUT computes

an optimal target mRNA sequence for this instance in O(642ψn) time, where

n = |V(GΓ )| and ψ is the natural cutwidth of GΓ .

Proof.

Corollary 1. MRSO is polynomial-time solvable in case ψ = O(lg |V(GΓ )|).

We now consider the implications of corollary 1. The treewidth [] of a graph
is a graph property that has been studied extensively in the literature. In partic-
ular [] (via []) showed that for graphs with n vertices, constant maximum degree,
and constant treewidth, one can obtain an ordering of the vertices such that the
linear graph under this ordering has cutwidth bounded by O(lg n).

Corollary 2. MRSO is polynomial-time solvable in case GΓ has constant

treewidth.

In [], Bodlaender gives a list of several interesting graph classes which are
subclasses of the class of constant treewidth graphs. We state a few of these
classes in the following corollary.



Algorithm ACUT(GΓ ,F)

Data : An implied structure graph GΓ with V(GΓ ) = {1, . . . , n}, and a set of
similarity functions F = f1, . . . , fn.

Result : An optimal target mRNA sequence T which is compatible with
respect to GΓ .

begin
1. if E(GΓ ) = ∅ then return T that maximizes F .
2. Select p ∈ {1, . . . , n−1} with maximum p-cutwidth.
3. Let E = {{i, j} ∈ E(GΓ ) | 1 ≤ i ≤ p, p+1 ≤ j ≤ n} and
V = {i ∈ V(GΓ ) | {i, j} ∈ E} be the vertices incident to E.
4. Set A = {i ∈ V | fi is degenerate}.
5. Define φA : A→ Σ3 such that φA(i) = C ⇔ fi(C) > −∞.
6. foreach possible codon assignment φV−A : V −A→ Σ3 do

if φ = φA ∪ φV−A is compatible with respect to GΓ [E] then

(a) T ′ ← ACUT(GΓ [1, p], fφ
1 , . . . , fφ

p ).

(b) T ′′ ← ACUT(GΓ [p+1, n], fφ
p+1, . . . , f

φ
n ).

end
end
return the highest similarity scoring target mRNA sequence T = T ′T ′′

found in step 6.
end

Fig. 2. Algorithm ACUT.

Corollary 3. MRSO is polynomial-time solvable in case GΓ is either a chordal

graph, an interval graph, circular arc graph, or a k-outerplanar graph for any

constant k.

5 Planar implied structure graphs

Since for any fixed k, MRSO is polynomial-time solvable in case GΓ is k-
outerplanar, a natural question to ask is whether the problem is still tractable
when the implied structure graph is planar. In this section we provide a negative
answer to this question by proving that MRSO remains NP-hard even for a
restrictive class of implied structure graphs.

Given a graph G, the page-number of G is the smallest partitioning of E(G)
possible, such that each subset of edges in the partition forms an edge-induced
outerplanar subgraph under the same vertex ordering. Clearly the page-number
of an outerplanar graph is one. For planar graphs however, there are graphs with
page-number four [12]. We show that the MRSO problem is NP-complete even
for cases where the given implied structure graph has page number two.

Proposition 3. MRSO is NP-complete even when restricted to implied struc-

ture graphs with page-number two.

Proof. We describe a reduction from the Maximum Independent Set prob-
lem, which is known to be NP-complete even when restricted to cubic planar



bridegeless connected graphs [4]. The proof is a direct extension of the APX-
completeness proof for MRSO given in [7].

Let an instance of the Maximum Independent Set problem be given by a
cubic planar bridgeless connected graphs G of order n. According to [11], there
exists a linear-time algorithm for finding a 2-page embedding of a cubic planar
bridgeless graph, and hence there is no loss of generality in assuming that G
is given in the form of a linear graph with page-number two. We now turn to
defining the corresponding instance of the MRSO problem. The implied struc-
ture graph GΓ is merely the input graph G and the set of similarity functions
fi : Σ3 → Q, 1 ≤ i ≤ n, is defined as follows:

∀i, 1 ≤ i ≤ n, fi(t3i−2t3i−1t3i) =

{

1 if t3i−2t3i−1t3i = AAA

0 otherwise

Quoting [7], the idea of the reduction is simply to identify the set of vertices
which are assigned to AAA in a solution for the corresponding instance of the
MRSO problem, with an independent set in G. Correctness of the proof now
follows directly from [7], Theorem 3. ut

6 Parameterizing by the similarity score

We next turn to consider the score of the optimum solution as a parameter for
MRSO. For this, we suggest a relaxation on the similarity functions of an MRSO

instance. More specifically, we consider instances with similarity functions of the
form fi : Σ3 → N. We call similarity functions of this sort natural similarity

functions, and denote MRSON the MRSO problem restricted to instances with
this type of similarity functions. Most of the interest in restrictive similarity
functions stems from the following proposition.

Proposition 4. MRSON is polynomial-time solvable in case the similarity

score of the optimal solution is fixed.

Proof. Let (GΓ ,F) be an instance of MRSON and let κ denote the similarity
score of the optimal target mRNA of this instance. Set n = V(GΓ )|. We may
assume with out loss of generality that for all 1 ≤ i ≤ n, fi(C) > 0 for some
codon C ∈ Σ3. Otherwise, if there exists any function fi ∈ F which fails to meet
this requirement, we solve the sub-instance (G′

Γ ,F
′) obtained by deleting i from

GΓ and fi from F . Any feasible solution for (G′

Γ ,F
′) can then be extended to a

feasible solution of the same score for the original instance since Γ has maximum
degree one. We present an algorithm which searches for a target mRNA string
T , by focusing on finding κ pairwise compatible codons with respect to GΓ . The
proof is divided into two separate parts depending on α(GΓ ), the cardinality of
a maximum independent set in GΓ .

Suppose κ ≤ α(GΓ ). Let V ⊆ V(GΓ ) be an independent set of size κ in
GΓ . Since GΓ is at most cubic, such a subset V can be found in O(4κn) time
using the bounded search tree technique []. We define a string T of length 3n



as follows. For each i ∈ V , assign codon Ci ∈ Σ3 such that fi(Ci) ≥ 1. This is
always possible since V is an independent set in GΓ , and since for all 1 ≤ i ≤ n,
fi(C) > 0 for some C ∈ Σ3. For each j ∈ V(GΓ )− V , assign codon Cj which is
compatible with all codons assigned to vertices in V with respect to GΓ . Again
this is always possible since Γ has maximum degree one. We check at once that
T = C1C2 . . . Cn is compatible with respect to GΓ and

∑n
i=1 fi(Ci) ≥ |V | = κ.

Now suppose κ > α(GΓ ). Since GΓ is at most cubic, we have α(GΓ ) ≥ n
4 , and

hence κ > n
4 . Here, the algorithm is by direct enumeration. More precisely, the

algorithm tries in turn to obtain a solution mRNA string T by finding ` pairwise
compatible codons, where ` ranges from 1 to κ. So, let ` ∈ {1, 2, . . . , κ}. We
search through all `-subsets of V(GΓ ) for an `-subset with an assignment which
is compatible with respect to GΓ . Such an exhaustive search can be executed in
O(

(

n
`

)

64`) time. Summing-up over ` and neglecting the time to check κ > α(GΓ ),

i.e., O(4κ), we obtain O(
∑κ
`=1

(

n
`

)

64`), which is O(2O(κ) κκ+1) since GΓ is at
most cubic and κ > α(GΓ ) ≥ n

4 .

Hence, MRSON can be solved in O(2O(κ) κκ+1 + 4κn) time, and the propo-
sition above follows. ut

Note that all hardness results obtained for MRSO still hold for MRSO

under natural similarity functions. Nevertheless, using a simple combinatorial
argument, we can easily obtain an optimal algorithm if we consider the score of
the optimal solution for MRSON to be fixed. Even so, it is a challenging problem
to investigate the parameterized complexity of the MRSO problem for more
general similarity functions. We do believe that it might be worth considering
similarity functions of the form fi : Σ3 → N ∪ {−∞} since these capture most
of the information necessary in most practical applications. Here, the −∞ value
can be used in case a certain codon (e.g. a stop codon) is not acceptable in a
certain position of T .
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