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Abstract

In this paper, we address the problem of A labelings, concerning frequency assignment
for telecommunication networks. In this model, stations within a given radius  must use
frequencies that differ at least by a value p, while stations that are within a larger radius
r’ > r must use frequencies that differ by at least another value ¢q. The aim is to minimize
the span of frequencies used in the network. This can be modeled by a graph coloring
problem, called the L(p,q) labeling, where one wants to label vertices of the graph G
modeling the network by integers in the range [0; M], while minimizing the value of M.
M is then called the A number of G, and is denoted by \;(G).

We study here the L(p,q) labeling problem, where, for a specific class of networks,
namely the d-dimensional grid G4 = G[n1,n2...n4), we give bounds on the value of the
A number of an L(p, q) labeling for any p,q > 0 in any d-dimensional grid G4. Some of
these results are optimal (namely, in the following cases: (1) p =10, (2) ¢=0, (3) ¢=1
and (4) p > 2dq + 1) ; when the results we obtain are not optimal, we observe that the
bounds differ by an additive factor never exceeding 2q — 2. The optimal result we obtain
in the case ¢ = 1 answers an open problem stated by Dubhashi et al. [DMP*02], and
generalizes results from [BPT00] and [DMP*02].

1 Introduction

In this paper, we study the frequency assignment problem, originally introduced in [Hal80],
where radio transmitters that are geographically close may interfere if they are assigned close
frequencies. This problem arises in mobile or wireless networks. Generally, this problem is
modeled by a graph coloring problem, where the transmitters are the vertices, and an edge
joins two transmitters that are sufficiently close to potentially interfere. The aim here is to
color (i.e. give a value, corresponding to the frequency) the vertices of the graph in such a way
that:



e any two neighbors (transmitters that are very close) are assigned colors (frequencies) that
differ by a parameter at least p ;

e any two vertices at distance 2 (transmitters that are close) are assigned colors (frequencies)
that differ by a parameter at least ¢ ;

e the greatest value for the colors is minimized.

It has been proved that under this model, we could assume the colors to be integers, starting
at 0 [GY92]. In that case, the minimum range of frequencies that is necessary to assign to the
vertices of a graph G is denoted A\?(G), and the problem itself is usually called the L(p, q) la-
beling problem. The frequency assignment problem has been studied in many different specific
topologies [GY92, Sak94, WGM95, BPT00, BKTvL00, CKK*02, MS02, BPT02]. The case
p =2 and ¢ = 1 is the most widely studied (see for instance [CK96, JNST00, Jha00, CP01]).
Some variants of the model also exist, such as the following generalization where one gives k
constraints on the k first distances (any two vertices at distance 1 < ¢ < k in G must be assigned
colors differing by at least ;). One of the issues also considered in the frequency assignment
problem is the no-hole property, where one wants to know whether a given coloring uses all the
possible colors in the range [0; A)(G)].

In this paper, we mainly focus on the L(p, ¢) labeling problem. More precisely, in Section 2
we study the case of the L(p,q) labeling in the d-dimensional grid G;. We first address in
Section 2.1 the cases where p = 0 or ¢ = 0. In Section 2.2, we give results for the L(p,q)
labeling of G4 for any p,q,d > 1. We give lower and upper bounds on M(Gy), and show that
in some cases, these bounds coincide. Notably, in the case ¢ = 1, the results we obtain are
optimal ; this answers an open problem stated by Dubhashi et al. in [DMP*02], and generalizes
results from [BPT00] and [DMP*02]. The results we give are also optimal when p =0, ¢ =0,
and p > 2dq + 1. We also prove that in some cases (namely, when 1 < p < 2dq), the coloring
we propose satisfies the no-hole property.

2 L(p,q) labeling of G4

We study here the A\ labeling problem with two constraints on the distances, in a particular
network topology, namely the d-dimensional grid G4 = G[ny,ny...ng). We first address the
special cases p = 0 (resp. ¢ = 0) in Section 2.1. We then address the more general case where
p,q > 1 in Section 2.2.

Due to space limitations, only a very restricted number of proofs will be given here. However,
we note that they very often rely on the same process, i.e. (1) a deep study of the constraints
induced by the grid topology, in order to derive lower bounds for A\?(G,), and (2) a specific
coloring for any vertex u € V(G,), for which we show that it is a valid L(p, q) labeling of G4
(this gives an upper bound for A5(Gy)).

2.1 L(p,q) labeling when p =0 or g =0
Property 1 For anyp > 0 and d > 1, Mj(Gy) = p.



Property 2 For any ¢ > 0 and d > 1, \)(Gq) = (2d — 1)q.

We note that except in specific cases, the colorings we have given above do not satisfy the
no-hole property (we recall that the no-hole property holds when all colors in the range [0; AP
are used). Indeed, in the case ¢ = 0, only colors 0 and p are used, thus the coloring cannot be
no-hole, except when p = 1. Similarly, in the case p = 0, the colors used are taken in the set
{0,4¢,2q...(2d — 1)q}, thus the coloring cannot be no-hole, except in the specific case ¢ = 1.

2.2 L(p, q) labeling when p,q > 1

We now address the L(p, q) labeling of Gy, for any values of p,g > 1 and d > 1. First, we
note that we can obtain two trivial upper bounds on M2(G4). The first one relies on an existing
L(p',1) labeling of Gg.

Observation 1 For any p,q,d > 1, \'(Gy) < q- /\F] (Ga).

There exists another upper bound for \(Gy), that relies on an existing L(1,1) labeling of
Gy.

Observation 2 For any p,q,d > 1, \o(G4) < max{p,q} - 2d.

The two above mentioned simple observations present the disadvantage to be based upon
an existing labeling of G4. In the following, we study the problem in more details, and define
upper and lower bounds on A} (Gy) for all values of p,q,d > 1. These results are summarized
in Theorem 1.

Theorem 1 (L(p, q) labeling of G4, for any value of p,q,d > 1) Letp > 1 and d > 1.
Then:

(1) 2p+ (2d — 2)g < Mo(Gq) < 2dg when 2 < 2p < ¢
(2) 2p+ (2d — 2)g < N0(Ga) < 2p+(2d — 1)g — 1 when 1 < ¢ < 2p < 4dg
(8) Mp(Ga) =p+ (4d — 2)q when p > 2dq + 1

Proof: Due to space limitations, we only give the proof for Case 2, that is when 1 < ¢ < 2p <
4dq. We first prove the lower bound of 2p+ (2d —2)¢: suppose that it is possible to L(p, ¢) label
the vertices of G4 with M colors, with M < 2p + (2d — 2)g — 1. We will first show that in that
case, no vertex of degree 2d in G4 can be assigned a color in the range [p—1;p+ (2d —1)g—1].
Indeed, suppose there exists a vertex u € V(Gy) such that v is assigned color p + z, with
—1 <z < (2d — 1)g — 1. Then, all its neighbors must be assigned a color in the range
[0; 2] U [2p + z; M], because of the gap of at least p that must exist between neighbors. Within
this range, one must be able to get 2d values, each pair of which differs of at least q. Let us
distinguish two cases: (i) x = —1 and (ii) z > 0. In case (i), it is clear that all the colors must
be in the range [2p — 1; M]. In other words, if we want to be able to assign the 2d colors of the
neighbors, we must have 2p—14(2d—1)q < M. However, we supposed M < 2p+(2d—2)q—1,
hence the contradiction since ¢ > 1. Now suppose that (ii) z > 0 ; we distinguish two more
cases: (ii-1) x = kq and (ii-2) x = kg — 1, with 1 <7 < ¢ — 1. In case (ii-1), we can use (k + 1)
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colors in the range [0; kg| (more precisely, colors 0, ¢, 2q. . . kq). Hence there remains 2d — (k—1)
to get in the range [2p + z; M]. For this, we must have 2p+x + (2d — (k— 1) — 1)g < M. This
gives 2p + (2d — 2)qg < M, a contradiction. In case (ii-2), only %k colors can be assigned in the
range [0;z]. Thus 2d — k colors must be assigned in the range [2p + z; M|, which can be the
case only if 2p+ 2+ (2d — k — 1)g < M. This can happen only when 7 > ¢+ 1, a contradiction
too. Thus we conclude that if \’(Gq) = M, no vertex of degree 2d in G4 can be assigned a
color in the range [p — 1;p+ (2d — 1)¢ — 1].

In other words, if such a coloring exists, all vertices of degree 2d are assigned colors in the
range [0;p — 2] U [p+ (2d — 1)¢; M]. Let Iy = [0;p — 2] and I, = [p + (2d — 1)g; M], with
M = 2p+(2d—2)q—j, j > 1. Clearly, I; contains p—1 integers, and 5 contains p—g—j+1 <p
integers (since j,¢ > 1). This means that if a vertex u of degree 2d in G is assigned a color in
I, (resp. I), all its neighbors must be assigned colors in I (resp. I;) — supposing that all the
neighbors of u are of degree 2d, which is the case if G4 is “big” enough. However, in order for
I, (resp. I3) to support 2d colors that, pairwise, admit a gap of g, the two following conditions
must be fulfilled: (1) (2d —1)g < p—2and (2) p+ (2d —1)g+ (2d —1)¢g < M. In other words,
we must have (1’) p > (2d — 1)¢g+ 2 and (2°) p > 2dg + j. Since j,q > 1, condition (2’) implies
condition (1’). Thus, in order to have a valid L(p, q) labeling with A\P(G4) = M, we must have
p > 2dq + j with j > 1. However, we supposed p < 2dq, hence the contradiction.

Now we prove the upper bound of 2p + (2d — 1)q — 1: for any vertex v = (x1 ...x4) in Gy, with
x; > 0 for any 1 < i < d, we assign to v color ¢(v) defined as follows:

d
c(w) = (Y (p+ (i —1) - q)z:) mod (2p + (2d — 1)q)
i=1
We are going to prove that this coloring is an L(p, ¢) labeling of G4. For this, we distinguish
two cases:

e u and v are neighbors in G4, thus they differ on one coordinate z;, 1 <1 < d. W.lo.g.,
suppose u = (z1,...2;...2q) and v = (z1,...2;+1...24). Thus |c¢(v) —c(u)| = (p+ (i —
1)q). Since 1 <7 < d, we have that |c(v) — ¢(u)| > p.

e u and v lie at distance 2 in Gy, thus they differ on two coordinates z; and z;, 1 <1 <
j < d. W.lo.g. we can consider only two cases, supposing u = (21,...%;...Zj...%4):
(1) v = (21,...2i+1...2; + 1...24) (Where possibly i = j) and (2) v = (z1,...2; +
1...zj —1...24) (where ¢ # j). In case (1), |c(u) — c(v)| = 2p + (i +j — 2)g. In that
case, |c(u) — c¢(v)| > g, except maybe when 7 = j = 1. However, when ¢ = j = 1, then
lc(u) — ¢(v)| = 2p, and by hypothesis we know that 2p > ¢. Thus |c(u) — ¢(v)| > ¢ in all
the cases. In case (2), let us suppose w.l.o.g. that j > ¢ (we recall we cannot have j = 1).
Then we have |c(u) — c(v)| = (j — i)¢q. Thus, for any two vertices u,v € V(G,) that lie at
distance 2, we have |c(u) — c¢(v)| > q.

Hence, we have proved that the above mentioned coloring is an L(p, q) labeling of the grid
in the case p,q,d > 1, 1 < q < 2p < 4dq. Since it uses colors in the range [0; 2p+ (2d —1)g — 1],



| Values of p and ¢ | X (Gy)> | MN(Gy) < | Gap | No-hole |

p#0;9=0 p 0 No
p=0;qg#0 (2d — 1)q 0 No
p,g>1;2p<gq 2p + (2d — 2)q | 2dq 2q — 2p No
g=1;1<p<2d 2p + 2d — 2 0 Yes (Prop 1)
pg>1;9<2p<4dq| 2p+(2d—2)q|2p+(2d—1)g—1] g—1 | Yes (Prop 1)
p,g>1;:p>2dg+1 p+ (4d — 2)q 0 No

Table 1: L(p, ¢) labeling of G4: Summary of the results

we conclude that M(Gg) < 2p+ (2d —1)g — 1. O

When 1 < ¢ < 2p < 4dg, the bounds we get coincide in the case ¢ = 1, thus yielding
an optimal L(p, 1) labeling of G4. We note that this generalizes Lemma 5 of [BPT00] and
Theorem 3 of [DMP102], and also answers an open problem stated in [DMP*02]. We also note
that when the above bounds do not coincide, they differ by an additive factor equal to ¢ — 1
when 1 < ¢ < 2p < 4dgq, and equal to 2g — 2p < 2¢ — 2 when 2 < 2p < q.

Moreover, in the case 1 < ¢ < 2p < 4dgq, for sufficiently large grids (that is, when the z;s
are large enough for each 1 < i < d), the coloring we propose to achieve an L(p,q) labeling
satisfies the no-hole property, that is all the colors in the range [0;2p + 2(d — 1)q — 1] are used.
This is the purpose of the following Proposition 1 below.

Proposition 1 (No-hole property when 1 < q < 2p < 4dq) Let d > 1. In that case,
when 1 < q < 2p < 4dgq, there exists a no-hole L(p,q) labeling of G4 such that \b(Ga) =
% + (2d — 1)g — 1.

In the other cases, the proposed L(p, q) labelings cannot be no-hole labelings, because some
colors are forbidden. Indeed, in the case 2 < 2p < ¢, colors are taken in the set {0, ¢, 2q, ... 2dq},
thus it cannot be a no-hole coloring. In the case p > 2dq + 1, the colors ranging in the inter-
val [(2d—1)g+1;p+(2d—1)g—1] are forbidden, thus the coloring we suggest cannot be no-hole.

Table 1 summarizes the results obtained in Section 2 concerning bounds for the L(p,q)
coloring of G4, for all the possible cases. In this table, we give the lower and upper bounds
for Ab(Gy) ; they are given in bold characters when the bounds coincide. We also mention the
gap between the upper and lower bounds, when they do not coincide. Finally, in the rightmost
column, we state whether the no-hole property holds for the colorings suggested in this paper.
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