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Abstract
Multimodal categorial dependency grammars introduced in this paper rep-

resent a uniform and efficient solution to the problem of compositional anal-
ysis of discontinuous dependencies (cross-serial dependencies included).

Keywords Dependency Grammar, Categorial Grammar, Mul-

timodal Architecture

1.1 Introduction

As far as it is a question of local domain syntactic relations, the anal-
yses of categorial grammars (CG) and of dependency grammars (DG)
are rather similar. The main differences are in the treatment of the de-
terminants and of the adjuncts. The true challenge for both formalisms
are the discontinuous syntactic relations and the flexible word order.
The former need additional expressive means, the latter is fraught with
explosion of types/rules system 1. These grammars solve these problems
in different ways. The logical type grammars extend the classical CG
with the introduction rules making the choice of raisable types. This
choice is unacceptable for the dependency syntax, in which the type
of a word is uniquely determined by the dependencies through which
it governs and is governed. To express discontinuous dependencies, the

1We don’t consider this problem because of space reasons.
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raisable types of logical type grammars are extended with modes 2

which determine the idiosyncratic compositionality of typed functors.
In DG, where the order is naturally separated from dependency rela-
tions, a similar effect can be attained using stratification of dependency
relations and of neighborhood topology and imposing constraints on
both (cf. Duchier and Debusmann (2001), Duchier et al. (2004)). The
two approaches are sufficiently expressive to explain the many complex
syntactic phenomena, but lead to algorithmic intractability.

Recently introduced Generalized Categorial Dependency grammars
(gCDG) (Dikovsky (2004), Dekhtyar and Dikovsky (2004)) define dis-
continuous dependencies using polarized valencies (left/right, posi-
tive/negative) and a simple valencies pairing principle FA: “for every
valency, the corresponding one is the closest dual valency in the indi-
cated direction”. This principle explains many well known discontinuous
dependencies, but it does not apply to the cross-serial dependencies in
Dutch. As simple as they are, the gCDG are very expressive: they
generate all CF and various non-CF languages, in particular MIX.
This means that probably, they are incomparable with the mildly CS
languages. gCDG-languages form an AFL and have a polynomial time
parsing algorithm. In this paper, we introduce into the gCDG a multi-
modal architecture considering valency pairing principles as modes and
admitting different principles for individual discontinuous dependen-
cies. In particular, we introduce for cross-serial dependencies a special
valency pairing principle FC: “first cross dual valency in the indicated
direction”. We prove that it is as efficient as FA and, in this way, ob-
tain an efficient polynomial time parsing algorithm for the multimodal
CDG under the two valency pairing principles.

1.2 Dependency types
Dependency type of a word (to be called category) represents its
governor-subordinate valencies. The categories have the form αP , where
α is a basic category determining continuous (projective) dependencies
and P is a potential, a string of polarized valencies determining dis-
continuous (non-projective) dependencies. The basic categories B(C)
are FO types constructed from primitives C : 1. C ⊂ B(C). 2. If
α ∈ C and β ∈ B(C), then [α\β], [α∗ \β], [β/α∗], [β/α] ∈ B(C).�
The constructors \, / being associative, each basic category can be
represented as [alm\...\al1\f/ar1/.../arn]. Intuitively, f corresponds

2The multimodal architecture was proposed and developed by Oehrle, Morrill,
Moortgat and Hepple (see Morrill (1994), Moortgat (1997)) and was applied to
dependencies in an indirect way (see Moortgat and Morrill (1991), Kruijff (2001)).
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FIGURE 1 A projective DT
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elle la lui a donnée

aux

clit−iobj

clit−dobj

pred

FIGURE 2 A non-projective DT (Fr.: ∗she itfem to-him has given)

to the incoming (governor) dependency and ali, arj correspond to left
and right outgoing (subordinate) dependencies. d∗ corresponds to the
iterated dependency d. A special type S ∈ C is reserved for sen-
tences. E.g., the dependency tree (DT) in Fig. 1 gives the categories:

in �→[c−copul/prepos−in] beginning �→ [det\prepos−in] the �→ [det]
was �→ [c−copul\S/pred] Word �→ [det\pred]
The polarized valencies use four polarities: left and right positive

↖,↗ and left and right negative ↙,↘ . For instance, v =↖d requires
a subordinate through dependency d situated somewhere on the left.
The dual valency v̆ =↙ d requires a governor through the same de-
pendency d situated somewhere on the right. Together they describe
the discontinuous dependency d. For negative valencies ↙ d,↘ d are
admitted special primitive anchor types #(↙d), #(↘d). Elimination
of such subtype creates no dependency. It only checks the adjacency
of a distant subordinate to its host word. gCat(C) will denote the set
of all categories over C. E.g., the DT in Fig. 2 is determined by the
following categories (the clitics la, lui are anchored on the auxiliary a):

elle �→ [pred] a �→ [#(↙clit−iobj)\#(↙clit−dobj)\pred\S/aux]
la �→ [#(↙clit−dobj)]↙clit−dobj lui �→ [#(↙clit−iobj)]↙clit−iobj

donnée �→ [aux]↖clit−iobj↖clit−dobj

1.3 Generalized Categorial Dependency Grammar
A Generalized Categorial Dependency grammar (gCDG) G = (W,C,
S, δ), is defined by a function δ (its lexicon), assigning a finite set of
categories in gCAT (C) to each word in W. Correctness of category
assignment Γ ∈ δ(x) to a string x ∈ W+, denoted Γ 
 S, is proved
using the following grammar-non-specific dependency calculus3.

3We show left-oriented rules. The right-oriented are symmetric.
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[pred]

[#l(α)]α
[#l(β)]β [#l(β)\#l(α)\pred\S/aux]

(Ll)
[#l(α)\pred\S/aux]β

(Ll)
[pred\S/aux]αβ

(Ll)
[S/aux]αβ [aux]β̆ᾰ

(Lr)
[S]αββ̆ᾰ

(Dl × 2)
S

(α =↙clit−dobj, β =↙clit−iobj, ᾰ =↖clit−dobj, β̆ =↖clit−iobj)

FIGURE 3 A proof for the dependency tree in Fig. 2

Ll. CP1 [C\β]P2 
 [β]P1P2

Il. CP1 [C∗\β]P2 
 [C∗\β]P1P2

Ωl. [C∗\β]P 
 [β]P

Dl. αP1(↙C)P (↖C)P2 
 αP1PP2 , if (↙C)P (↖C) satisfies the pairing principle
FA: P has no occurrences of ↙C,↖C.

Ll is the classical elimination rule. Eliminating the argument subtype
C �= #(α) it constructs the (projective) dependency C and concate-
nates the potentials. C = #(α) creates no dependency. Il derives k > 0
instances of C. Ωl serves for the case k = 0. Dl derives discontinuous
dependencies. It pairs and eliminates dual valencies satisfying the rule
FA and creates the discontinuous dependency C.

For a dependency structure (DS) D and a string x, let G(D, x) de-
note the relation: D is the graph constructed in a proof Γ 
 S for some
Γ ∈ δ(x). Then the language (DS language) generated by G is the set
L(G)=df {w | ∃D G(D, w)} (∆(G)=df {D | ∃w G(D, w)}).

For instance, the dependency tree (DT) in Fig. 2 is constructed from
the proof in the dependency calculus, shown in Fig. 3.

gCDG are very expressive (see the diagram in Fig. 4). Their sub-
class, the gCDG with bounded valency deficit4, generate the CF lan-
guages. gCDG can also generate non-CF languages, e.g., the lan-
guages {anbncn | n > 0} and L(m) = {an

1an
2 ...an

m || n ≥ 1} over
W = {a1, . . . , am}, m ≥ 2 (Dikovsky (2004)). The languages L(m)

are mildly CS and cannot be generated by basic TAGs starting from
m > 4 (see Joshi et al. (1991)). Moreover, there is a gCDG generat-
ing the language MIX consisting of all permutations of the strings
anbncn, n > 0 : MIX = {w ∈ {a, b, c}+ || |w|a = |w|b = |w|c} (Béchet
et al. (2005)). E. Bach conjectures that MIX is not a mildly CS

4The valency deficit σ(n) is the maximal size of a potential used in the proofs
of category assignments to strings of length n. Lσ<c(gCDG) is the class of lan-
guages generated by gCDG with bounded valency deficit. Lσ<c(gCDG) = L(CF )
(Dikovsky (2004)).
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CF ≡w gCDGσ<c

MCTAG ≡w MinG ≡w MCFG

TAG ≡w LinIG ≡w CombCG

Lcopy /∈? gCDG

gCDG ≡w mmCDGFA,FC

MIX /∈? MCTAG

FIGURE 4 Comparison with other families
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Jan P iet Marie de kinderen zag helpen laten zwemmen

det

pred

pred

pred

inf−dobj inf−dobj inf−dobj

prep−dobj

FIGURE 5 Dutch: ∗Wim Jan Marie the children saw help learn swim

language. Recently, it was shown that the family of gCDG languages
L(gCDG) is an AFL (Dekhtyar and Dikovsky (2007)). So gCDG repre-
sent an interesting alternative to the mildly CS grammars. On the other
hand, it is conjectured in (Dikovsky (2004), Dekhtyar and Dikovsky
(2004)) that the copy language Lcopy = {ww || w ∈ {a, b}+}, which is
basic TAG, cannot be generated by a gCDG.

1.4 Multimodal architecture for gCDG
A new perspective on cross-serial dependencies in Dutch.
Lcopy is interesting because for a long time there is an opinion that
it serves as an abstract model of the so called unlimited cross-serial
dependencies in Dutch. This Dutch construction represents the sentences

n1n2 . . . nmnm+1v1v(inf)2 . . . v(inf)m, where there is a predicative depen-

dency n1
pred←− v1 between the finite verb v1 and the noun n1, predica-

tive dependencies ni
pred←− v(inf)i between the verbs v(inf)i in the infini-

tive and the nouns ni (2 ≤ i ≤ m) and eventually also the dependency

nm+1
prep−dobj←− v(inf)m if the verb v(inf)m is transitive and nm+1 is

present (i.e., nm+1 �= ε). In Fig. 5, we show an example of this construction,

borrowed from (Bresnan et al. (1982)). So indeed, the polarized valencies

(predicative in the example) should be paired not with the closest, but with

the most distant dual valencies. Meanwhile, a more detailed analysis of this

construction (Pulman and Ritchie (1985)) shows that an agreement exists

only between the finite verb v1 and its subject n1 and the form of the object
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D(m) =

L

FIGURE 6 Dependency tree D(m)

nm+1 (when it is present) is determined by the transitive verb v(inf)m. From

this follows that the true model of this construction is not Lcopy, but the DS

language ∆cross = {D(m) || m > 0} over W = N ∪ V, where D(m) is the DS

shown in Fig.6 and nil ∈ N, vjr ∈ V. The corresponding language is linear

CF. gCDG cannot generate ∆cross. So they are not adapted for Dutch.

Basic notions and facts. Our solution to the problem of cross-serial
dependencies rests upon a property of independence of basic categories
and polarized valencies in the proofs in the dependency calculus (Dekht-
yar and Dikovsky (2004, 2007)). This property is expressed in terms
of projections of categories and “well-bracketing” criteria for potentials.

Local and valency projections ‖γ‖l, ‖γ‖v are defined as follows:
1. ‖ε‖l = ‖ε‖v = ε; ‖αγ‖l = ‖α‖l‖γ‖l and ‖αγ‖v = ‖α‖v‖γ‖v for α
∈ gCat(C) and γ ∈ gCat(C)∗.
2. ‖CP ‖l = C and ‖CP ‖v = P for CP ∈ gCAT (C).

To speak about “well-bracketing” of potentials, we interpret ↙ d
and ↗ d as left brackets and ↖ d and ↘ d as right brackets. The sets
of all left and right bracket valencies are denoted V l(C) and V r(C).
V (C)=df V l(C) ∪ V r(C). For a dependency d and a potential P, let
P � d be the result of deleting the occurrences of all valencies but ↙d,
↗ d, ↖ d and ↘ d. Then P is balanced if P � d is well bracketed in
the usual sense for every d. This property can be incrementally checked
using the following values defined for every potential P and all valencies
α ∈ V l(C) and ᾰ ∈ V r(C) :

∆α(P ) = max{|P ′|α − |P ′|ᾰ || P ′ is a suffix of P},
∆ᾰ(P ) = max{|P ′|ᾰ − |P ′|α || P ′ is a prefix of P}

(|γ|α is the number of occurrences of α in γ). They express the deficits
of right and left α−brackets in P (i.e. the maximal number of right and
left bracket α-valencies which need to be added to P on the right (left)
so that it became balanced. It is not difficult to prove that a potential
P is balanced iff

∑

α∈V (C)

∆α(P ) = 0 and that

∆α(P1P2) = ∆α(P2) + max{∆α(P1) − ∆ᾰ(P2), 0},
∆ᾰ(P1P2) = ∆ᾰ(P1) + max{∆ᾰ(P2) − ∆α(P1), 0}

for all potentials P1, P2, and every α ∈ V l(C), ᾰ ∈ V r(C).
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Let c be the projective core of the dependency calculus, consist-
ing of the rules L, I and Ω and 
c be the provability relation in this
sub-calculus. One of the key results of (Dekhtyar and Dikovsky (2004,
2007)) is the following property of projections independence providing
for gCDG a polynomial time parsing algorithm.

Theorem 1 For a gCDG G with dictionary δ and for a string x, x ∈
L(G) iff there is Γ ∈ δ(x) such that ‖Γ‖l 
c S and ‖Γ‖v is balanced.

The dependency calculus of gCDG uses the rules D with the valency
pairing principle FA. The only point in the proof of this theorem in-
trinsically related to this pairing principle is the following proposition
evidently true for FA.

Lemma 1 A potential P is balanced iff for every category αP there is
a proof αP 
 α using only the rules Dl and Dr.

Multimodal CDG. Now, turning back to our solution to the prob-
lem of cross-serial dependencies, we can say more precisely that it con-
sists in assigning to each polarized valency α its mode, i.e. the particular
valency pairing principle Mα for α, and respectively extending the de-
pendency calculus to new discontinuous dependency rules Dl

Mα
and

Dr
Mα

. This needs a revision of the gCDG definition.

Definition 1 G = (W,C, S, δ, µ) is a multimodal CDG (mmCDG) if
(W,C, S, δ) is a gCDG and µ is a function assigning to each polarized
valency α a pairing principle Mα. There are rules Dl

Mα
and Dr

Mα
in

the multimodal dependency calculus 
µ for all α used in µ. The language
(DS language) generated by G using a set of modes M is denoted LM (G)
(∆M (G)). mmCDGM is the family of all such mmCDG.

In particular, the new pairing principle (mode) FCl defining the left
cross dependencies is as follows:

DFCl . αP1(↙C)P (↖C)P2 
 αP1PP2 ,
if P1(↙C)P (↖C) satisfies the pairing principle
FCl : P1 has no occurrences of ↙C and P has no occurrences of ↖C.
It is not difficult to show

Proposition 1 ∆cross = ∆FCl

(Gcross), where Gcross is the mmCDG:
n �→ #(L)↙L, [#(L)\#(L)]↙L, v �→ [#(L)\S/R]↖L, [R/R]↖L, R↖L,

for n ∈ N and v ∈ V.

Example 1 For instance, Gcross generates the DS D(3) in Fig. 6 if
ni1ni2ni3vj1vj2vj3 �→ #(L)↙L[#(L)\#(L)]↙L[#(L)\#(L)]↙L[#(L)\S/R]↖L[R/R]↖LR↖L.

A proof of D(3) ∈ ∆cross is shown in Fig. 7.

Extending the dependency calculus to a new rule DM for a pairing
principle M, we should also extend Lemma 1 to this rule in order to
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[#(L)]↙L[#(L)\#(L)]↙L

(Ll)
[#(L)]↙L↙L [#(L)\#(L)]↙L

(Ll)
[#(L)]↙L↙L↙L

[#(L)\S/R]↖L

[R/R]↖L[R]↖L

(Lr)
[R]↖L↖L

(Lr)
[#(L)\S]↖L↖L↖L

(Ll)
[S]↙L↙L↙L↖L↖L↖L

(Dl
FC × 3)

[S]

FIGURE 7 A proof of D(3)

guarantee the projections’ independence and so an efficient parsing. Let
us do it for the principle FCl.

Lemma 2 A potential P is balanced iff for every category αP there is
a proof αP 
FCl α using only the rule DFCl .

Proof scheme. Whatever is a pairing principle M, the corresponding
rule DM concerns only one pair of dual valencies ↙d, ↖d, for which
µ(↙d) = M. So, without loss of generality, we can presume that P =
P � d. This implies
Statement 1. P is balanced iff |P ′|↙d ≥ |P ′|↖d for every prefix P ′ of
P and |P |↙d = |P |↖d.
Lemma 2 follows from the following
Statement 2. Let αP1↙dP2↖dP3 
FCl αP1P2P3 . Then

P = P1 ↙dP2 ↖dP3 is balanced iff P ′ = P1P2P3 is so.
This statement is proved by induction on n = |P |↙d.
1. For n = 1 it is trivial (P =↙d ↖d).
2. |P |↙d = n + 1. Then P1 = ε, P2 = (↙d)m for some m ≥ 0 and
P =↙d(↙d)m ↖dP3. By Statement 1, P is balanced iff P ′ = (↙d)mP3

is so. Hence, Statement 2 follows from the fact |P ′|↙d = n. �

Corollary 1 For a mmCDG G = (W,C, S, δ, µ) with modes M =
{FA,FCl} and for x ∈ W+, x ∈ L(G) iff there is Γ ∈ δ(x) such
that ‖Γ‖l 
c S and ‖Γ‖v is balanced.

Corollary 2 L(gCDG) = L(mmCDGFC) = L(mmCDGFA,FC).

1.5 Parsing Complexity
In (Dekhtyar and Dikovsky (2004)) was described a polynomial time
parsing algorithm for a subclass of gCDG 5. Corollary 1 lets extend it
to mmCDGFA,FCl

. Below, we present the extended algorithm.
Preliminaries. Let us fix for the rest a mmCDG G = (W,C, S, δ, µ)
with left polarized valencies V l(C) = {v1, . . . , vp} and dual right valencies
V r(C) = {v̆1, . . . , v̆p}. We start with two failure functions used in the algo-
rithm. Let w = w1w2...wn ∈ W +, α ∈ V l(C) and 1 ≤ i ≤ n. Then

πL(α, i) = max{∆α(‖Γ‖v) || Γ ∈ δ(w1...wi)}
5It is implemented in Lisp by D. and H. Todorov and in C# by I. Zaytsev.
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is the left failure function. Similarly,
πR(α, i) = max{∆α(‖Γ‖v) || Γ ∈ δ(wn−i+1...wn)}

is the right failure function for α ∈ V r(C). We set πL(α, 0) = πR(α, 0) = 0.
It is not difficult to prove the following properties of these functions.

Lemma 3 (i) Let 1 ≤ i ≤ n− 1. Then
πL(α, i + 1) =

max{∆α(P ) + max{πL(α, i)−∆ᾰ(P ), 0} || P = ‖γ‖v , γ ∈ δ(wi+1)},
πR(α, i + 1) =

max{∆ᾰ(P ) + max{πR(α, i) −∆α(P ), 0} || P = ‖γ‖v , γ ∈ δ(wn−i+1)}.
(ii) If Γ � S for some Γ = γ1...γn ∈ δ(w), then

∆α(‖γi...γj‖v) ≤ πR(ᾰ, n− j), ∆ᾰ(‖γi...γj‖v) ≤ πL(α, i− 1)
for all 1 ≤ i ≤ j ≤ n, α ∈ V l(C), ᾰ ∈ V r(C).

mmCdgParser applies to the mmCDG G and to a string w =
w1w2...wn ∈ W+ and fills up a n × n triangle matrix M with items.
Each cell M [i, j], i ≤ j, corresponds to the string interval wi...wj and
contains a finite set of items. Each item codes a category CP and has
the form 〈C, ∆L, ∆R, I l, Ir〉, where: C is a basic category C ∈ B(C),
∆L = (∆v1 , . . . , ∆vp) and ∆R = (∆v̆1 , . . . , ∆v̆p) are integer vectors
whose component i contains the corresponding deficits of right (left)
non-paired v-brackets in the potential P , I l, Ir are left and right angle
items from which I is calculated (for I in diagonal M [i, i], I l = Ir = ∅).
Correctness. Correctness of CalcFailFuncL() and CalcFailFuncR() fol-
lows from Lemma 3.

Theorem 2 Let G = (W,C, S, δ, µ) be a mmCDG and w = w1w2...wn

∈ W+. Then for any 1 ≤ i ≤ k ≤ j ≤ n, an item I = 〈θ, ∆L, ∆R, I l, Ir〉
falls to M [i, j] iff there is Γ = Γ1γi . . . γjΓ2 ∈ δ(w) such that γi . . . γj ∈
δ(wi . . . wj) and
(i) γi . . . γj 
 θ,
(ii) ∆L[α] = ∆α(‖γi . . . γj‖v), ∆R[α] = ∆ᾰ(‖γi . . . γj‖v)
for all α ∈ V l(C), ᾰ ∈ V r(C),
(iii) γi . . . γj satisfies point (ii) of Lemma 3.

Complexity. For a mmCDG G = (W,C, S, δ, µ), let lG = |δ| be
the number of category assignments in the lexicon, aG = max{k ||
∃x ∈ W ([αk\...\α1\C/β]P ∈ δ(x) ∨ [β\C/α1/.../αk]P ∈ δ(x))} be
the maximal number of argument subtypes in assigned categories, pG =
|V l(C)| = |V r(C)| be the number of polarized valencies and ∆G =
max{∆α(P ) || ∃x ∈ W (CP ∈ δ(x) ∨ α ∈ V (C))} be the maximal
valency deficit in assigned categories. In the complexity bound below,
n will denote the length of the input string n = |w|.



10 / Alexander Dikovsky

Parsing algorithm mmCdgParser.
Algorithm mmCdgParser
//Input: mmCDG G, string w = w1...wn

//Output: 〈“yes”, DSD〉 iff w ∈ L(G)
{

CalcFailFuncL();
CalcFailFuncR();
for (k = 1, . . . , n)
{

Propose( k )
}
for (l = 2, . . . , n)
{

for (i = 1, . . . , n − l)
{

j := i + l − 1;
for (k = i, . . . , j − l)
{

SubordinateL(i, k, j);
SubordinateR(i, k, j);

}
}

}
if (I = 〈S, (0, 0, . . . , 0), (0, 0, . . . , 0), I l, Ir〉 ∈ M [1, n])

return 〈“yes”, Expand(I)〉;
//procedure Expand( I ) calculates the output DS
//It is the only one sensitive to the valency pairing
//principles FA,FC. It is tedious and is not shown here
else

return 〈“no”, ∅〉;
}

//For 1 ≤ i ≤ n
Propose( i )
{

(loop) foreach (CP ∈ δ(wi)
{

foreach (v ∈ V l(C))
{

∆L[v] := ∆v(P );
if (∆L[v] > πR[v̆, n − j]) next (loop);
∆R[v̆] := ∆v̆(P );
if (∆R[v̆] > πL[v, i − 1]) next (loop);

}
AddItem( M [i, i], 〈C, ∆L, ∆R, ∅, ∅〉 );

}
}
AddItem( M [i, j], 〈C, ∆L, ∆R, I l, Ir〉 )
{

M [i, j] := M [i, j] ∪ {〈C, ∆L, ∆R, I l, Ir〉};
if (C = [C′ ∗ \β])
{

AddItem( M [i, j], 〈[β], ∆L, ∆R, I l, Ir〉 );
}
if (C = [β/C′∗])
{

AddItem( M [i, j], 〈[β], ∆L, ∆R, I l, Ir〉 );
}

}

CalcFailFuncL()
{

foreach (v ∈ V l(C))
{

πL[v, 0] := 0;
for (i = 1, . . . , n)
{

πmax := 0;
foreach (CP ∈ δ(wi))
{

πmax := max{πmax, ∆v(P )+
max{πL[v, i − 1] − ∆v̆(P ), 0}};

}
πL[v, i] := πmax;

}
}

}

CalcFailFuncR() is similar.

//For 1 ≤ i ≤ k ≤ j ≤ n
SubordinateL( i, k, j )
{

(loop)
foreach (I1 = 〈α1, ∆L

1 , ∆R
1 , I l

1, I
r
1 〉 ∈ M [i, k],

I2 = 〈α2, ∆L
2 , ∆R

2 , I l
2, I

r
2 〉 ∈ M [k + 1, j])

{
foreach (v ∈ V l(C))
{

∆L[v] := ∆L
2 (v) + max{∆L

1 (v) − ∆R
2 (v), 0};

if (∆L[v] > πR[v̆, n − j]) next (loop);
∆R[v̆] := ∆R

1 (v̆) + max{∆R
2 (v̆) − ∆L

1 (v̆), 0};
if (∆R[v̆] > πL[v, i − 1]) next (loop);

}
if ( α1 = C and α2 = [C\β] )
{

AddItem( M [i, j], 〈[β], ∆L, ∆R, I1, I2〉 );
}
elseif ( (α1 = C and α2 = [C ∗ \β]) or α1 = [ε] )
{

AddItem( M [i, j], 〈α2, ∆L, ∆R, I1, I2〉 );
}

}
}

SubordinateR( i, k, j ) is similar.

Theorem 3 Algorithm mmCdgParser has time complexity
O(lG · a2

G · (∆G · n)2pG · n3).
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Proof. A category γ ∈ δ(x) may be reduced to no more than a2
G

different categories. So the maximal number of matrix cell elements is
lG · a2

G. The valency deficits are bounded by the maximal value of the
failure functions. So the maximal deficit of a polarized valency is ∆G ·n.
Therefore, the number of different valency deficit vectors is bounded
by (∆G · n)2pG . Filling one matrix cell needs visiting n cells. There are
n2

2 cells in M. This proves the time bound. �

Remark 1 1. For a fixed grammar G, the values lG, aG, pG and ∆G

are constant. If G may vary, the membership problem becomes NP -
complete (Dekhtyar and Dikovsky (2004)).
2. When no polarized valencies, the parsing time is evidently O(n3).
3. Every mmCDG G with bounded valency deficit σ < c can be trans-
lated into an equivalent mmCDG Gc without polarized valencies (so
with parsing time O(n3)). Of course, the size of Gc is exponential:
|Gc| = O(|G| · cpG). However, if the number of discontinuous dependen-
cies in sentences is uniformly bounded by a constant, then the parsing
time is O(n3) without exponential explosion of the grammar size.

1.6 Concluding remarks
The categorial dependency grammars express discontinuous dependen-
cies by joining the paradigme of logical type grammars with the cog-
nitivistic paradigme. From the first paradigme they inherit the core
first order types and constructor elimination rules. From the second
one they introduce valency pairing principles modeling fast dynamic
memory structures. E.g., the pairing principle FA corresponds to the
hypothesis that the discontinous dependencies are controlled using non-
communicating stacks memory: one stack per valency type. The princi-
ple FC corresponds to another kind of fast memory: the queue. Due to
this join, the linguistic definitions of dependency types in the lexicon
become completely local. The projective dependencies of a word are
those of its local domain as a governor. A discontinuous dependency is
defined in two local domains: that of the governor assigns it the posi-
tive valency and that of the subordinate assigns it the negative valency.
The dependency itself results from pairing the two valencies. Another
important consequence is that our multimodal extension of CDG ex-
pands their strong expressive power without changing the complexity
and the weak expressive power.
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